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Abstract

We consider a heuristic approach for combining short traffic
traces of various degrees of self-similarity to produce a
longer trace that has the following desirable properties. The
mixed trace is capable of modeling computer networking
traffic that exhibits both short- and long-range dependencein
a unified model. Synthetic traces of self-similar characteris-
tics can be generated quickly due to the simplicity of our
method, which is faster than the traditional approach of gen-
erating/approximating traffic traces from nothing.

1 Introduction

Synthesizing traces that exhibit self-similarity is important
because modern computer networking traffic is reported to
possess self-similar (SS) characteristics (see[6] and itsrefer-
ences). Several agorithms, which have complexity ranging
from O(n) to O(n2) for approximating/generating SS
traces of length n, are reviewed in [6]. Traditional
approaches are concentrated on generating SS traces from
scratch; i.e., generating one data point after another until a
specified length is reached. In contrast, our method produces
a longer trace by combining previously generated shorter
traces. In comparing with many existing methods for gener-
ating traces from scratch, our combining method is orders of
magnitudes faster; hence it can be used to generate traces in
real time. For example, we can cross-multiply 1000 points of
agiven SS trace (a short trace) to produce a new 1,000,000-
point trace (a much longer trace) that exhibits some degree
of self-similarity. Furthermore, the new method is capable of
generating traces possessing both short- and long-range
dependence at various time scales.

2 Long-Range Dependence and Self-Similarity

Let { X} beawide-sense stationary (WSS) process with
autocorrelatlon r(n) and power spectral density g(f) .

Assume that a r (n) diverges, then éix} is long-
range dependent (LhD) [otherwise, if a r(n) con-
verges, we define {X_} to be short- range dependent
(SRD)]. Let { XM} be a WSS process formed by averag-
ing the process { X,} innon-overlapping blocks of m, i.e,

XM = (X gt %+ X, ) m.

Then the LRD process { X} is (asymptotically) SS with
parameter 0<b <1 if the following 3 (equivalent) proper-
tieshold [1]:

var X{M ~m™® asm® ¥, (1)

r(i) ~iPasi® ¥, 2

g(f) ~f-(1-b) as f® 0. (3)

One often uses the rescaled range statistic R&S to esti-
mate b asfollows. Let X and S?(n) be the sample mean

and variance of {X}, respectively, and Ilet
W, = X, +% + X, —kX , k = 1,%,n. The ReS dais-

tic is defined by R(n) sS(n), whee R(n) =
max (0, W, %a, W ) — min (0, W;,%, W, ) .Then
E[R(n) sS(n)] ~nH asn® ¥, @

where H = 1—b 22 isthe Hurst parameter. H is ameasure
for burstiness; i.e., the higher H (or lower b)) the burstier the
process [2]. The underlying WSS process is SRD when
H = 0.5 and LRD otherwise. The following result shows
that self-similarity is both persistent and dominating in heter-
ogenous networking environment.

Theorem 1: The asymptotic behavior of aprocessformed by
multiplexing two SS processes will be that of the burstier
one.

Proof: Let {Z } = {X, +Y,} bethesum process, where
{X,} and {Y} are two component SS processes of
parameters b, and b, , respectively. We also assume that
{X,} and {Y} aejointly WSS;i.e, E{X, ,, Y} and
E{ X Y_. .} depend only on k. The WSS aggregated pro-
cess {quy} then has the variance

varZ(M = varX,(M +varY(m +
2a (varX,(MvarY, (M) 1/2, (5)
where a is the correlation coefficient of X,(™ and Y™,
which is bounded (i.e., |a] £ 1). Since the component pro-
cesses are asymptotically SS, when m® ¥ , (5) becomes

—(b, +b,) 2

b b
varz{M ® a;m "t +a,m 2+azam

where a, are positive c%nstants [see (1)]. When m® ¥,
varZ(m) ® a,m -min( , for some positive a,; there-
fore, {Z } |sasymptot|cally SShy (1). Q.E.D.

3 The Combining Algorithm

Our goal isto generate a synthetic trace of length N, where N
=TW for some positive integers T and W. That is the entire
trace is composed of T time windows; each window contains
W samples. Furthermore, the required trace must behave like
a SS process of Hurst parameter H; and it must look like
another SS process in each window with Hurst parameter
Hy, - Tothisend, let { X, %4, X,,} beaSStrace of Hurst
parameter H,,, and {Y,, ¥, Y;} be (another) SS trace of
Hurst parameter H. Then the required trace



{Z,,2, %, 2} issimply the crossmultiplication of all
elementsof {X;} and {Yj} :
Y X YKo Ya, Y Xy
Yo X1 Yo Xo Y2, Yo Xy
Ya (6)

Y X, Ya, Yo Xy -

YoXp Y Xy

TL

Therefore, we need only T +W SS data points (which can
be computed on-line or off-line) and TW multiplications to
produce the longer trace of TW data points. One can think
of the integrated trace { Z;} asatrain of time windows; all
windows share the same level of burstiness (i.e., the same
Hurst parameter H,, ). However, the load intensity varies
from one window to the next according to a SS process of
Hurst parameter H .

To see how thetrace { Z;} specified by (6) meets most of

our objectives, notice that in the ith window (of size W), the
samples of {Z} are Y;X;,Y;X,, %, Y,X,,; therefore,
{Z} is ascaed verson of X, X,, %, Xy, which has
Hurst parameter H,,,.Thus, {Z;} aso has Hurst parameter
H,y in each time window as desired. On the other hand, it is
shown in [4] that the averages of {Z} in non-overlapping
blocks of size jw are Zz(W) = YD) XMW where
XW) = (X +X,+ Y +X,,) 8. Thus in large time
scales, {Z;} retains some SS characteristics of {Y,} . In
other words, {Z} isapproximately asymptotically SSwith
Hurst parameter H . We consider only 2 Hurst parameters (H
and H,,,) for the sake of clear illustration in this paper; more
parameters can be incorporated into the model at the cost of
increasing complexity.

One often uses fractional Gaussian noises (FGNS) to gen-
erate the two component traces { X;} and {Y;} , which
take negative and non-integer values. In the next section we
will transform the FGNs to have non-negative integer values
asrequired in computer networking applications.

4 An Application

In this section we apply the algorithm (6) to generate a non-
negative, integer-valued synthetic trace that possesses both
SRD and LRD characteristics in different time scales. Addi-
tionally, the trace must satisfy a specified load constraint and
alevel of traffic denseness.

4.1 Model Parameters

Recall from Section 3 that we need the following 4 basic
parameters to generate a longer trace from two shorter
traces:

H — (global) asymptotic Hurst parameter. The generated
trace looks asymptotically SS with Hurst parameter H.
H,y — (local) Hurst parameter as seen in each time win-
dow. The traffic in each time window behaves as a SS
process of Hurst parameter H,, , generaly H,, * H.

T — the number of time windows. The generated series
consists of T time windows. Each window has the same
degree of burstiness (i.e., same Hurst parameter H,, );
and the traffic load will change from one window to the
next according to a SS process of Hurst parameter H.
W — window size. Each time window has W data points.
To refine the model a bit further, we introduce 2 more
parameters as follows:
L — window maximum traffic load. Cumulative traffic in
each time window can not exceed L. However, instanta-
neous traffic values in finer time stamps can exceed the
corresponding (trandlated) L. For example, the maximum
ethernet load is 10 Mbps; however, in some rare 0.1-sec-
ond interval, the load value can exceed 1 Mb (which is
trandated to the corresponding load that exceeds 10
Mbps).
r — an indicator of traffic denseness, r1 (0,1) . The
generated trace has lower peaks and shallower valleysfor
larger r (i.e., the traffic looks denser at larger r).
Our simple model is meant to capture only important traffic
characteristics such as the degree of SRD/LRD, the level of
traffic denseness, and the extent of traffic burstiness. Traffic
details at microscopic levels are not considered here because
they are application-specific; however, one can tailor the
model to fit the required applications. In other words, we
model only intrinsic properties of the traffic; it is up to the
users of the model to do the fine-tuning. The model accepts 6
input parameters and produces the specified numbers of out-
put data points, which represent the number of network traf-
fic unitsin atime unit (e.g., byte count per 0.01 second on a
backbone network).

4.2 Procedures

One can use the following steps to generate the traffic trace
specified in Section 4.1.
(1) Generate a FGN series {E;, E,, %2, E;} of Hurst
parameter H by some known technique such as Hosking
Fractional Differencing. Notice that samples of FGN often
assume negative and non-integer values.
(2) Trandate E,, E,, %2, E; into apositive series {F.} ;
e.g. (cf. [6]), (1-nNg

|:i = 2(r+e) P (7)
wherer is an indicator of traffic denseness, r1 (0, 1) , and
eisapositive number to make the denominator in the above
exponent positive.
(3 Set Y, = (LF;) omax{F,, %, F;} to ensure that
Y; £ L. Thetraffic will be governed by the (load) parameter
Y; in each window, and the traffic load will change from
one window to the next.
(4) Repeat steps (1) and (2), using the Hurst parameter H,, ,
to generate another positive series G;, G,, 74, G,,,. Let
X, =G r(G,+G,+% +G,) . _U_smg {X;} and {Y;}
to generate thetrace {Z;} as specified by (6), the total load
in each time window of {Z} satisfies Wz(W =
WY, XW) = Y, £L as desired. Then the integer parts of
{Z;} constitute the required synthetic trace.

T



We assign the following values to the 6 input parameters
to test the model: H = 0.99, Hy = 0.50, r = 0.45, L = 106,
T = W = 1000. Therefore, the output trace has
N = TW = 10% datapoints. We arbitrarily define each data
point to be the number of traffic bytes per 0.01 second. Fig-
ure 1 shows the generated trace in four different time scales.
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Fig. 1 Synthetic Trace at 4 Time Scales: 0.01 - 10
Seconds (H =0.99, Hy=0.50,r =0.45, L = 106, T=W
= 10%). The traffic shows burstinessin all 4 time scales.

4.3 Output Analysis

Several graphical techniques exist for testing if the generated
trace agrees, to some extent, with SS properties (1) — (4). In
this subsection we use two of the most popular techniques,
namely the variance-time and R/S plots, which are graphical
demonstrations of (1) and (4), respectively.

In each R/Splot, the straight line of slope 0.5 corresponds
to an uncorrelated (i.e., low bursty) process of Hurst parame-
ter H = 0.5; the line of slope 1 corresponds to a process of

extremely high degree of burstiness (H = 1). In each vari-
ance-time plot, the line of slope —1 corresponds to an uncor-
related process (b = 1), whereas the line of slope O
corresponds to an extremely bursty process (b = 0). In
computing the R/S statistics, the n samples are segmented
into time bins of equal size d. Therefore, more R/S statistics
are produced for smaller values of d. Figure 2 shows that the
generated trace indeed is SRD (i.e,, H,,,» 0.50) in small
timescalesand isLRD (i.e., H>0.9) in larger time scales.

To see the effect of the denseness-indicator parameter r ,
we increase the value of r from 0.45 to 0.85 while keeping
al other parameters the same; and then we plot the newly
generated trace in Figs. 3 and 4. Comparing Figs. 1 and 2
with Figs. 3 and 4 confirms that higher r means denser traf-
fic profile. Comparing Fig. 2 with Fig. 4 suggests that the
estimated Hurst parameter seems to be higher at higher r
(which is also ameasure of traffic load); thisisrelated to the
observation in [2] that the degree of self-similarity tends to
increase with the load level (on ethernets). Notice that the
variance-time and the R/S plots of our synthetic traffic
resemble those of the backbone traffic of a distributed inter-
active simulation reported in [3]; our variance-time plots are
also comparable to those of some TCP traffic traces studied
in[5].
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Fig. 2 Graphical Statistics for the Generated Trace (H =
0.99, H,,=0.50,r =045, L = 106, T=W=1000).

Remark 1: By letting X; = Y; when W=Tand H = H

in algorithm (6), we can generate atrace of length T2, which
isapproximately SSwith Hurst parameter H. Therefore, gen-
erating a trace of length n requires only n cross-multiplica-
tions and a trace of length J/n (since n = Jhyn). Asan
example, let H = Hyy = 0.99, T = W= 1000; and then use the
procedures in Section 4.2 with X, = Y;. Thus the mixed
trace has N = TW = 106 data points and is supposed to



approximate a SS trace of Hurst parameter 0.99 (see Fig. 5).
This combining method is much faster than the traditional
start-from-scratch approach. The resultant R/S variance-
time, power spectral density (periodogram estimate), and
autocorrelation plots are shown in Fig. 6, which show that
our mixing algorithm produces the longer trace that inherits
SS characteristics from the shorter trace. Then we estimate
the Hurst parameter by linear fitting on all time scales: the
estimate from the RIS plot is ~ 0.933; whereas that from the
variance-time plot is~ 0.905. Thus the averaged estimate for
the Hurst parameter is H ~ 0.92, which is 93% of the target
value (0.99).
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Fig. 3 Synthetic Trace at 4 Time Scales: 0.01 - 10
Seconds (H = 0.99, Hy = 0.50,r =0.85,L = 106, T=W
= 1000). The traffic shows burstinessin al 4 time scales.

5 Discussions

We form asingle longer trace by multiplying two shorter SS
traces; the combined trace is shown by examples to inherit
some SS characteristics from the shorter traces. So far the
two initial traces are free of any restrictions besides the SS
assumption. Suppose that the two initial SS traces have the
same Hurst parameter H = 1—b =2 ; naturally one would
ask the following questions (thanks to a reviewer for good
questions and comments). What are sufficient conditions that
the two shorter traces must satisfy to yield a combined trace
that has high quality? Can the algorithm be used recursively;
i.e., by starting with two very short traces and then by repeat-
ing the procedure to generate a very long trace? These ques-
tions are dealt with in [4], where we show under mild
conditions that var Zi(JW) ~ (jwW) =D which resembles (1).
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Fig. 4 R/SPlot and Variance-Time Plot for the Generated
Trace (H=0.99, H,,=0.50,r =0.85, L = 106, T=W=
1000).
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