
Reliable File Transfer in the Multicast Domain

Winston Dang
August 1993

Abstract

This paper describes a broadcast file transfer protocol that is suitable for wide-
spread distribution of files from several servers to several clients attached to the
MBONE network. Through use of automatic request and selective retransmission
techniques, reliable file transfer is assured for all clients. The results obtained from
an actual implementation of this protocol indicate that it can consistently provide
simultaneous efficient reliable transfer service of files from many servers to many
receivers.

Introduction
There are many applications which require files to be distributed to large
audiences in a timely manner. The traditional approach has been for file transfer
to occur on an individual basis between computers. A good example of this is
distribution of weather forecasting data. If a server were to support two hundred
clients, two hundred connections to the server would have to be setup and 200
file transfers would need to occur. A significant improvement to this model would
be for the server to broadcast the data so that it would be received by all clients
at one time. In the example above, the server would only need to make one
transmission rather than 200. Not only would it reduce the transmission
overhead on the sender and the network, but it would also reduce the time it
takes for all destinations to receive the information1.

Broadcast file transfer is not a new idea. Considerable research has already been
done on efficient broadcast file transfer protocol. THe Nadir Bulk Data
Transmission Protocol, the High Performance Broadcast File transfer protocol
and the Calo and Easton protocol all were designed to automatically correct data
corruption from satellite broadcast transmissions. With the advent of global
connectivity of networks, other techniques evolved to support broadcast file
transport. The Coherent File Transfer protocol, and the XTP protocol are two
such protocols which support broadcast file transfer from one server to many
cleints. T his paper proposes a protocol which would expand on these protocols
and allow simultaneous transmission of files from many servers to many clients.
It also is designed to efficiently service both a dynamically changing small or
large audience with a minimum of overhead to the servers.

The MBONE network

1. ACM 1988 Multicast Routing in yeah I know don’t grump

Multicasting over the MBONE provides a means for broadcast packets to be dis-
tributed from the server to clients all over the world. Distribution of broadcast
packets is done efficiently in a manner much like a branching hierarchial tree
distribution.

“The MBONE is a virtual network. It is layered on top of portion of the physical Internet to sup-
port routing of IP multicast packets since the multicasting function has yet to be integrated into
many production routers. The network is composed of islands that can directly support IP multi-
cast, such as multicast LANs like Ethernet, linked by virtual point-to-point links called “tunnels”1

Although multicasting possesses an efficient transport mechanism it is an unre-
liable service. At any client, received packets could experience the following:

• Packets may arrive out of order

• Packets may become duplicated

• Packets may not arrive at all

• For all packets delivered, the data is guarenteed to be intact

To insure reliable delivery of all packets, there are three basic techniques to
improve reliability:

1. Forward Error Control(FEC)

FEC transmits enough extra parity bits to enable the receiver to correct
the maximum expected amount of corrupt data without further retrans-
mission.2 FEC must be used when the return channel is unavailable or
two slow. For highly compressed data files, this strategy amounts to
redundant retransmission of the complete file.

2. Automatic Repeat Request Strategies (ARQ)

The general concept is to detect frames with errors and then request the
transmitter to repeat the information in those erroneous frames. The
repeat process could be either a “go back n” or a “selective repeat” strategy.

• go back n
The go back n technique forces the sender to retransmit both
lost data and out of sequence packets so that clients never
have gaps in received packet sequences. The way it works is
each packet sent has a sequential number attached to the
header in the packet. The receiver acknowledges (ack) all
packets received by repeating the sequence number back to
the sender. If any reception gaps are detected by the sender,
the sender restarts transmission back on the nth packet.

• Selective Repeat
 Selective repeat is a process in which clients determine lost

1. FAQ of multicasting
2. Computer Communication Review vol 20 no 4-5 Sept-Oct 1990 p 297

packets and communicate to the sender to retransmit only
the lost packets (nack). It assumes the client has sufficient
buffering to allow the reinsertion of the lost packet.

3. A Hybrid of the two techniques detailed above

ARQ techniques assume some protocol for reserving time for the retransmission
of erroneous blocks and for reinserting the correct version in proper sequence.
It also assumes sufficient overall delay and corresponding buffering that will
permit such reinsertion.1

The FEC technique was found to be unattractive since redundant broadcasts
would result in inefficient use of bandwidth. This would make it unacceptable
for use over low bandwidth links. The protocol we developed is similar to the
Nadir Bulk Data Transmission protocol.

The Nadir Bulk Data Transmission protocol
One of the most efficient protocols designed for a situation where the receiving
sites do not have direct access to the broadcast transmission channel is the Nadir
Bulk Data Transmission protocol. In this system, the whole file is transmitted, and
then successively smaller portions which have been negatively acknowledged by
one or more sites are transmitted until the entire file has been sent.2

The technique we developed is the IMM ARQ protocol.

THE IMM ARQ PROTOCOL
The file to be transmitted is divided into N packets of B bits each. A header is
attached to each packet which uniquely identifies the file and server it belongs to
and the file position of the data. Each file is transmitted in a number of cycles;
first all of the packets are transmitted, then in each missing packet recovery cycle
those packets which have been negatively acknowledged (nack) by one or more
sites are retransmitted. To avoid an impulse of nack’s being sent simultaneously
to the server, it is necessary to randomly time delay all nacks responses to the
server. Use of negative acknowledgments is particularly attractive when serving
large audiences because it minimizes flow of missing packet requests sent to the
server. As an example, if 1000 clients were to send a positive ack back to the
sender, the sender would be deluged with 1000 acks sent at the same time to the
sender. But by multicasting all negative acknowledgments, only requests for
missing packets that were not received and not previously requested by other cli-
ents are sent to the server. The missing packet recovery cycle repeats until all
receivers positively acknowledge reception of the entire file.

1. Computer Communications Review v 6 p 28
2. A high performance Broadcast File Transfer protocol p 275

The Missing Packet Recovery Cycle

The missing packet recover cycle is designed to handle the problem of packets
not being received. In this cycle clients selectively request missing packets from
the specific server. The sender responds by retransmitting the requested packets.
The selective request algorithm assumes all clients are capable of reinserting out
of sequence packets and reception of redundant packets. But this is a character-
istic of broadcast packets which must be accounted for already.In order for selec-
tive request to work, the receivers must be able to reliably detect which packets
are missing. Detection is easily done by the client, using three key pieces of infor-
mation.

1. All data packets sent are of a predetermined length;
2. Knowledge of all file positions written to;
3. Total file size.

With knowledge of all the received data file positions written to, their record
length and the file size, we are able to build a profile of gaps in the file that need
to be received.

As a simple example, assume a client knows that all packets received are 10 bytes
long and the file size is 100 bytes. If that client received packets written to file
positions 0,10,40 ,60, 70 and 90, then it would be able to selectively request
retransmission of packets for file positions 20,30,50,and 80.

The total file size is the only key piece of information that needs to be relayed to
every client. This critical piece of information is ensured by piggybacking it with
all synchronization packets to clients. But if the client was not able to receive
the file size information, it could still build a reasonable missing packet request
by assuming a maximum file size for all files transmitted. The sender would
simply receive a request for a larger number of missing packets but the sender
would simply filter out the bogus missing packets and respond properly to the
client.

Repetition of the missing packet cycle is necessary to cope with any type of
packet loss in the previous cycle. If a client is experiencing packet losses,
potential loss must be accounted for in the retransmission sequence as well. It
is the repetition of the missing packet recover cycle which ensures repeated
retransmission of missing packets until all clients are satisfied.

Handling Out of Sequence and Redundant packets
To handle the problem of packets that are duplicated or arrive out of sequence,
an identification header is attached to every packet. The header specifies the file
and serverit belongs to and its file position. Redundant packets are now easily
recognized by matching the file position field to previously received packet file
positions. Out of sequence packets can now be reinserted since the file position
field tells the receiver where the out of sequence packets should be inserted.

Rate Control
Rate control is used to control the time delay between packet bursts from the sender. It’s
purpose is to regulate the sender’s rate of sending packets so that receivers are not
overwhelmed with packets and begin dropping large numbers of packets. By using the
missing packet request reports as feedback to the sender, the time delay between packet
bursts can be adjusted. Currently excessive packet losses are used to temporarily extend
delay intervals between future transmitted packets.

AN EXAMPLE TRANSMISSION

Sender Client 1 Client 2

Sender transmits
10 packets numbered
1 to 10

Client 1 gets
packets 1,3,5,9

Client 2 gets
packets 1,3,5,9

Client 1 requests
packets 2,4,6,7,8,10

Client 2 hears
request for same
packets. No request

Sender hears request
for packets

Sender transmits
packets 2,4,6,7,8,10

Client 1 gets
packets 2,4,6,7

Client 2 gets
packets 2,4,8,10

Client 2
requests packets
6,7

Client 1 hears
request for packets

Sender hears request
for packets

Sender transmits
packets 6,7

Client 1 ignores
redundant packet 6,7

Client 2 gets
complete file
and displays
image. Positive ack sent

Client 1 requests
packets 8, 10

Client 2 ignores
redundant
packets requestSender hears request

for packets

Sender transmits
packet 8, 10

Client 1 gets
complete file and
displays image

Client 2 ignores
redundant
packet

for packets sent.

Positive ack sent

End

Efficiency Analysis
In the most efficient case, the sender would make one single transmission with
all receivers receiving the complete file. The worst case would be 100% packet
loss by one or more clients. In general the efficiency of the protocol is geometri-
cally dependant on the packet loss rate of the worst receiver. This can be demon-
strated mathematically. If we assume that the packet loss rate at the worst
receiver is P where P <= 1 and the total number of packets needed to be sent to
represent the entire file is N, then the total theoretical number of packets that
needs to be sent is:

The above equation is a simple geometric series and converges for all P < 1. The
sum can be represented as

 For a packet loss rate of 0, N packets will be transmitted. For a packet loss rate
of 100% (P=1), the sender will spend an infinite amount of time retransmitting.
It also shows that for small values of P the number of retransmissions is rela-

Pk N×()
k 1=

α

∑ N P N×() P2 N×() P3 N×() … Pk N×() …+ + + + + +=

Pk N×()
k 1=

α

∑ N 1 P–()⁄=

Efficiency performance versus Packet Loss Rate

P 1/(1-P)

0

0.05

0.10

0.20

0.50

0.60

0.80

0.90

0.95

1.000

1.052

1.111

1.250

2.000

2.500

5.000

10.00

20.00

tively small. But for high loss rates, the number of retransmission can be quite
high. Performance degradation comes in the form of extended repeating of pack-
ets. However those receivers with low packet losses, are still able to quickly
receive the entire file, since the entire file is transmitted first with selective repeat
broadcast following.

TEST RESULTS

In the three weeks that the beta IMM session has been running, the recovery
system has demonstrated that it is effective in recovering packets. The client
group consisted of a dynamically changing population of forty hosts situated in
different parts of the country. Since this was the first implementation of the
protocol, there were constant changes being made to the client software. Out of
the forty, only fifteen were positively identified as running the latest software
version. In that group of 15 clients, the server successfully exported every JPEG
files ranging in size from 13Kbytes to 450Kbytes every 60 minutes for a duration
of 2 weeks. The server experienced an average of 4 to 8 missing packet requests
per file.
The number of actual retransmitted packets appeared to be directly related to
network loads, other MBONE activities going on and transient factors such as
receivers starting up in the middle of a transmission. The missing packet
recovery protocol worked well if packet loss rates were low for all clients but when
packet losses were high the server spent a lot of more time retransmitting
packets. This confirmed the efficiency of the algorithm was tied to the packet
loss rate of the worst receiver. The performance of the server also suggested that
the efficiency of the protocol was more dependent on the worst receiver packet
loss rate and not on the size of the audience.

CONCLUSION

Generally, the IMM protocol worked extremely well. The test demonstrated that
any type of file can be distributed to a large widely distributed set of receivers
around the world in a timely basis. It also showed that broadcast file transfer is
a viable option which people are willing to use. Because the protocol automati-
cally corrects all out of sequence, redundant and missing packets in a manner
which could be used for any type of file, it shows promise for use in other appli-
cations that require widespread dispersal of information. Such applications
include distribution of news, dissemination of stock market data, books, reports
and database updates. Further tests need to be done.

Acknowledgements

The author would like to thank the people at the University of Hawaii for all their
help and advice.

References

1. "XTP Protocol Definition Revision 3.6", Protocol Engines, 1900 State Street Suite D, Santa Bar-
bara, California 93101, 1991

2.Calo 1981. S.B. Calo M.C. Easton "A Broadcast Protocol for File Transfer to Multiple Sites,"
IEEE Transactions on Communications, vol COM-29, no 11, pp 1701-1707

3. Youss1984. H. Youssef, C. Huitema, F. Kamoun, "Performance Evaluation of NADIR Bulk Data
Transmission Protocol for Multipoint Satellite Link", Performance of Computer-Communication
Systems, pp 367-382, North Holland, 1984.

4. J.S.J. Daka and A.G. Waters A High Performance Broadcast File Transfer Protocol, Computer
Communications Review, Sigcomm August 16-19 1988, pp 274-282

5. Stephen Deering, Multicast Routing in Internetworks and Extended LANS

6. Robert Sanders and Alfred Weaver, The Xpress Transfer Protocol (XTP) - A Tutorial, Computer
Communications Review, Sigcomm October 1990 Vol 20 Number 5 pp 67-81

7. Clark, David, and Lambert, Mark, "NETBLT: A bulk Data Transfer Protocol", Request for Com-
ment 998, 1987.

8.Dimitri Bertsekas/Robert Gallager, "Data Networks", Prentice Hall 1987

9. Andrew Tanenbaum, "Computer Networks", Amsterdam, Prentice Hall 1988

